Zusammenfassung
Ziel der vorliegenden Studie war die Untersuchung histologischer Veränderungen im
Bereich der parodontalen Strukturen bei Hunden der Rasse Beagle, bei denen Zähne experimentell
mit starken und mit schwachen kieferorthopädischen Kräften bewegt wurden. Mit Hilfe
einer am zweiten Prämolar und am ersten Molar befestigten kieferorthopädischen Apparatur
wurden im Unterkiefer kontinuierliche reziproke Kräfte von 25 cN in einer und 300
cN in der anderen Kieferhälfte ausgeübt. Die Bewegung der Zähne wurde wöchentlich
gemessen. Nach jeweils einem, vier, 20, 40 und 80 Tagen wurden Versuchstiere für die
histologische Untersuchung getötet. Zur Untersuchung des Gewebes wurden die Schnitte
mit Hämatoxylin-Eosin eingefärbt, aktive Osteoblasten wurden mit alkalischer Phosphatase
und Osteoklasten mit tartratstabiler saurer Phosphatase markiert. Die Umbauvorgänge
im Knochen auf der Druck- und der Zugseite der Zahnwurzeln hatten nach 24 Stunden
bereits eingesetzt und in einigen Schnitten fanden sich schon hyalinisierte Areale.
Im Unterschied zu bisherigen Studien ließen sich sowohl bei Prämolaren, als auch bei
Molaren Hyalinisierungen über den gesamten Versuchszeitraum hinweg nachweisen. Bei
einigen Zähnen fanden sich hauptsächlich lingual und bukkal neben der mesiodistalen
Mittellinie im parodontalen Faserapparat nur kleine hyalinisierte Bereiche, bei anderen
Zähnen wiederum ausgedehntes nekrotisches Gewebe. Die Studie kommt zu dem Schluss,
dass Hyalinisierungen zwar die Zahnbewegung einschränken, allerdings existiert hier
kein Zusammenhang mit der Stärke der ausgeübten Kräfte.
Abstract
The aim of this study was to evaluate histological changes in the periodontal structures
of beagle dogs after using high and low continuous forces during experimental tooth
movement. An orthodontic appliance was placed on the second premolar and the first
molar by exerting a continuous and constant reciprocal force of 25 cN on one side
and 300 cN on the other side of the mandible. Tooth movement was recorded weekly.
Dogs were sacrificed after one, four, 20, 40, and 80 days for histological evaluation.
Hematoxylin and eosin (HE) staining was used for tissue survey, staining for alkaline
phosphatase as a marker was used for active osteoblasts, and tartrate-resistant acid
phosphatase staining was used for osteoclasts. After 24 hours, the remodeling process
had already started at the pressure and tension side, and in some samples hyalinization
was found. In contrast to earlier studies, hyalinization was found throughout the
entire experimental period, both in molars and in premolars. In the periodontal ligament
of some teeth, small patches of hyalinization were found at the pressure side, mostly
located buccally or lingually of the mesiodistal plane, whereas others showed large
areas of necrotic tissue. It is concluded that hyalinization limits tooth movement,
but there is no relationship with the force level.
Schlüsselwörter
Desmodont - Kraftstärke - Histologie und Kieferorthopädie - Zahnbewegung
Key words
periodontal ligament - force magnitude - histology and orthodontics - tooth movement
Literatur
1 Burstone C J. The biophysics of bone remodeling during orthodontics - optimal force
considerations. In: Norton LA, Burstone CJ (eds). The Biology of Tooth Movement. CRC
Press, Boca Raton, Fla 1989; 321-334
2
Storey E, Smith R.
Force in orthodontics and its relation to tooth movement.
Aust J Dent.
1952;
56
11-18
3 Jarabak J R, Fizzell J A. Technique and Treatment with Light-Wire Edgewise Appliances. Vol.
1. 2nd ed., CV Mosby Co., St. Louis, Mo. 1972; 353
4
Rygh P.
Ultrastructural changes in pressure zones of human periodontium to orthodontic tooth
movement.
Acta Odontol Scand.
1973;
31
109-122
5
Reitan K.
Some factors determining the evaluation of forces in orthodontics.
Am J Orthod.
1957;
43
32-45
6
Boester C H, Johnston L E.
A clinical investigation of the concepts of differential and optimal force in canine
retraction.
Angle Orthod.
1975;
44
113-119
7
Quinn R S, Yoshikawa D K.
A reassessment of force magnitude in orthodontics.
Am J Orthod.
1985;
88
252-260
8
Lee B W.
The force requirements for tooth movement. Part 1: Tipping and bodily movement.
Aust Orthod J.
1995;
13
238-248
9
Ren Y, Maltha J C, Kuijpers-Jagtman A M.
Optimum force magnitude for orthodontic tooth movement: a systematic literature review.
Angle Orthod.
2003;
73
86-92
10 Proffit W R. Biomechanics and mechanics. In: Proffit WR, Fields HW. Contemporary
Orthodontics. 3rd ed. CV Mosby Co., St. Louis, Mo. 2000; 298-305
11 Thilander B, Rygh P, Reitan K. Tissue reactions in orthodontics. In: Graber TG,
Vanarsdall R, Vig K (eds). Orthodontics: Current Principles and Techniques. 3rd ed.,
CV Mosby Co., St. Louis, Mo. 2000; 117-156
12
Middleton J, Jones M, Wilson A.
The role of the periodontal ligament in bone modeling: the inital development of a
time dependent finite element model.
Am J Orthod Dentofacial Orthop.
1996;
109
155-162
13
Melsen B.
Biological reaction of alveolar bone to orthodontic tooth movement.
Angle Orthod.
1999;
69
151-158
14
Hujoel P P.
A meta-analysis of normal ranges for root surface areas of the permanent dentition.
J Clin Periodontol.
1994;
21
225-229
15
Van Driel W D, Van Leeuwen E J, Von den Hoff J W, Maltha J C, Kuijpers-Jagtman A M.
Time-dependent mechanical behavior of the periodontal ligament.
Proc Inst Mech Eng [H].
2000;
214
497-504
16
Pilon J J, Kuijpers-Jagtman A M, Maltha J C.
Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental
study in beagle dogs.
Am J Orthod Dentofacial Orthop.
1996;
110
16-23
17
Van Leeuwen E J, Maltha J C, Kuijpers-Jagtman A M.
Tooth movement with light continuous and discontinuous forces in Beagle dogs.
Eur J Oral Sci.
1999;
107
468-474
18
Van De Wijngaert F P, Burger E H.
Demonstration of tartrate-resistant acid phosphatse in un-decalcified, glycolmethacrylate-embedded
mouse bone: a possible marker for (pre)osteoclast identification.
J Histochem Cytochem.
1986;
34
1317-1323
19
Reitan K.
Clinical and histologic observations on tooth movement during and after orthodontic
treatment.
Am J Orthod.
1967;
53
721-745
20
Reitan K.
Tissue behaviour during orthodontic tooth movement.
Am J Orthod.
1960;
46
881-900
21
Lee B W.
Relationship between tooth-movement rate and estimated pressure applied.
J Dent Res.
1965;
44
1053
22
Gibson J M, King G J, Keeling S D.
Long-term orthodontic tooth movement response to short-term force in the rat.
Angle Orthod.
1992;
62
211-215
23
Konoo T, Kim Y J, Gu G M, King G J.
Intermittent force in orthodontic tooth movement.
J Dent Res.
2001;
80
457-460
24
Verna C, Dalstra M, Melsen B.
The rate and the type of orthodontic tooth movement is influenced by bone turnover
in a rat model.
Eur J Orthod.
2000;
22
343-352
25
Alvarez Rodriguez L, Steimetz T, Ubios A M, Cabrini R L.
An original orthodontic appliance for experimental mesial movements in rats.
Acta Odontol Latinoam.
1996;
9
45-49
26
Hixon E H, Atikian H, Callow G E, McDonald H W, Tacy R J.
Optimal force, differenzial force, and anchorage.
Am J Orthod.
1969;
5
437-457
27
Katona T R, Paydar N H, Akay H U, Roberts W E.
Stress analysis of bone modeling response to rat molar orthodontics.
J Biomech.
1995;
28
27-38
28
Ohyama N, Yamaguchi S.
Effects of phenylephrine and prazosin on axial movement of the rat incisor and arterial
blood pressure.
Jpn J Pharmacol.
1999;
80
271-274
29
Row K L, Johnson R B.
Distribution of 3H-proline within transseptal fibers of the rat following release
of orthodontic forces.
Am J Anat.
1990;
189
179-188
30
Sandstedt C.
Einige Beiträge zur Theorie der Zahnregulierung.
Nord Tandlæk Tidskr.
1904;
5
236-256
31
Hirashita A, Noda K, Kaida K, Nakamura Y, Kuwabara Y.
Phagocytosis of collagen by fibroblasts incident to experimental tooth movement.
Arch Histol Jpn.
1985;
48
149-158
32
Cooper S M, Sims M R.
Evidence of acute inflammation in the periodontal ligament subsequent to orthodontic
tooth movement in rats.
Aust Orthod J.
1989;
11
107-109
33
Owman-Moll P.
Orthodontic tooth movement and root resorption with special reference to force magnitude
and duration.
Swed Dent J.
1995;
Suppl 105
1-45
34
Epker B N, Frost H M.
Correlation of bone resorption and formation with the physical behavior of loaded
bone.
J Dent Res.
1965;
44
33-41
35
Iwasaki L R, Haack J E, Nickel J C, Morton J.
Human tooth movement in response to continuous stress of low magnitude.
Am J Orthod Dentofacial Orthop.
2000;
117
175-183
36
Tong Y.
Forced tooth movement in rats and its histologic changes.
Zhonghua Kou Qiang Yi Xue Za Zhi.
1990;
25
268-270
37
Owman-Moll P, Kurol J, Lundgren D.
Effects of a doubled orthodontic force magnitude on tooth movement and root resorption.
An inter-individual study in adolescents.
Eur J Orthod.
1996;
18
141-150
38
King G J, Keeling S D, McCoy E A, Ward T H.
Measuring dental drift and orthodontic tooth movement in response to various initial
forces in adult rats.
Am J Orthod Dentofacial Orthop.
1991;
99
456-465
39
Lee B W.
The force requirements for tooth movement. Part 1: Tipping and bodily movement.
Aust Orthod J.
1995;
13
238-248
1 Der englischsprachige Originalartikel ist erschienen im Angle Orthodontist 2004;
74: 16-25.
Prof. Dr. A. M. Kuijpers-Jagtman
Department of Orthodontics and Oral Biology · College of Dental Science · University
Medical Center · Nijmegen
117 Tandheelkunde
P.O. Box 91 01
NL-6500 HB Nijmegen
Email: a.kuijpers-jagtman@dent.umcn.nl